metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

cis-[N-(4-Chlorobenzyl)iminodiacetato- $\kappa^3 N, O, O'$]bis(1*H*-imidazole- κN^3)-copper(II)

María Pilar Brandi-Blanco,^a María Magdalena de Benavides-Giménez,^a Josefa María González-Pérez^a and Duane Choquesillo-Lazarte^b*

^aDepartamento de Química Inorgánica, Facultad de Farmacia, Universidad de Granada, c/ Campus de Cartuja s/n, 18071 Granada, Spain, and ^bLaboratorio de Estudios Cristalográficos, IACT – CSIC, P. T. Ciencias de la Salud, Granada 18100, Spain

Correspondence e-mail: duanec@ugr.es

Received 5 April 2007; accepted 9 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.086; data-to-parameter ratio = 17.5.

In the title compound, $[Cu(C_{11}H_{10}CINO_4)(C_3H_4N)_2]$, the Cu^{II} atom is in a square-pyramidal coordination geometry, with the two imidazole ligands in *cis* positions and the *N*-(4-chlorobenzyl)iminodiacetate ligand occupying the apical and two *cis*-basal positions. In the crystal structure, molecules are linked into sheets by N-H···O hydrogen bonds.

Related literature

In addition to a related dinuclear iminodiacetate derivative (Nguyen-Huy *et al.*, 1990), it is known that a closely related *N*-(benzyl)iminodiacetate(2-) derivative exists, also as an Him solvate (Him is imidazole) (Polyakova *et al.*, 2001).

For related literature, see: Addison et al. (1984).

Experimental

Crystal data

 $\begin{bmatrix} Cu(C_{11}H_{10}CINO_4)(C_3H_4N)_2 \end{bmatrix}$ $M_r = 455.35$ Monoclinic, $P2_1/n$ a = 10.2028 (5) Å b = 13.4280 (6) Å c = 13.9113 (7) Å $\beta = 97.119$ (1)°

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{min} = 0.562, T_{max} = 0.825$

Refinement

253 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ \AA}^{-3}$

V = 1891.20 (16) Å³

 $0.49 \times 0.32 \times 0.15 \text{ mm}$

21629 measured reflections

4437 independent reflections

4043 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.33 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.024$

Z = 4

Table 1

Selected geometric parameters (Å, °).

Cu1-O8 1.9556 (13) Cu1-N1 2.0855	(14)
	(12)
Cu1-N21 1.9874 (15) Cu1-O4 2.2252	(13)
Cu1-N31 2.0009 (15)	
O8-Cu1-N21 89.70 (6) N31-Cu1-N1 97.54	4 (6)
O8-Cu1-N31 152.89 (6) O8-Cu1-O4 108.66	i (6)
N21-Cu1-N31 92.12 (6) N21-Cu1-O4 96.0	(6)
O8-Cu1-N1 84.05 (5) N31-Cu1-O4 98.04	4 (6)
N21-Cu1-N1 169.05 (6) N1-Cu1-O4 77.60) (5)

Table 2

Hydrogen-bond geometry (A, S	٦).
------------------------------	-----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N23-H23···O4 ⁱ	0.85	1.90	2.733 (2)	164
N33-H33···O9 ⁿ	0.86	1.93	2.779 (2)	169

Symmetry codes: (i) -x, -y, -z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *publCIF* (Westrip, 2007).

Financial support from ERDF-EC, MEC Spain (project CTQ2006–15329-C02–02/BQU) is gratefully acknowledged. DCh-L thanks CSIC-EU for an I3P postdoctoral research contract.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PR2009).

References

- Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Nguyen-Huy, D., Viossat, B., Busnot, A., Sicilia-Zafra, A. G., Gónzalez-Pérez, J. M. & Niclós-Gutiérrez, J. (1990). *Inorg. Chim. Acta*, **169**, 9–11.

Polyakova, I. N., Poznyak, A. L. & Sergienko, V. S. (2001). Russ. J. Inorg. Chem. 46, 556-562.

- Sheldrick, G. M. (2001). *SHELXTL*. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Westrip, S. P. (2007). publCIF. In preparation.

Acta Cryst. (2007). E63, m1678-m1679 [doi:10.1107/S160053680702288X]

cis-[N-(4-Chlorobenzyl)iminodiacetato- $\kappa^3 N$,O,O']bis(1H-imidazole- κN^3)copper(II)

M. P. Brandi-Blanco, M. M. de Benavides-Giménez, J. M. González-Pérez and D. Choquesillo-Lazarte

Comment

The molecular structure of (I) (Fig. 1) is centrosymmetric. The Cu(II) atom exhibits a square pyramidal coordination geometry, with a τ parameter of 0.27 (Addison *et al.*, 1984), built by a *N*-(*p*-chlorobenzyl)iminodiacetato ligand in a *fac*-tridentate conformation and two *cis* imidazole ligands. In the dianionic ligand, the two five-membered chelate rings lie nearly perpendicular (dihedral angle 72.1 (1)°).

In the crystal, centrosymmetric pairs of molecules are H-bonded by two N—H···O interactions involving parallel Him (N23) ligands which are weakly π,π -stacked (Fig. 2). Additional N—H···O interactions connect pairs of molecules generating sheets (Fig. 3).

Experimental

The new ternary complex $[Cu^{II}(C_{11}H_{10}CINO_4)(C_3H_4N)_2]$ was obtained by reaction of a mixture having $Cu_2CO_3(OH)_2/H_2L/Him 1 \text{ mmol}/2 \text{ mmol}/20 \text{ mmol} (H_2L, N-(p-chlorobenzyl))minodiacetic acid; Him, imidazole) in water (200 ml); with Him in a large excess. The resulting solution was filtered on a crystallization device which was covered with a plastic film to control the evaporation. After multiple days, prismatic blue crystals were collected and used for X-ray diffraction studies.$

Refinement

The amine (imidazole) H atoms were located in the difference map and refined as riding, with N—H = 0.86 Å and with $U_{iso}(H) = 1.2U_{eq}(N)$. Other H atoms were positioned geometrically and treated as riding with C—H = 0.95–0.99 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radii.

Fig. 2. A pair of centrosymmetric molecules of (I) built by N—H···O and π,π -interactions (dashed lines). Symmetry code (i): -*x*, -*y*, -*z*.

Fig. 3. A view of part of the crystal structure of (I), showing the formation of a sheet. The hydrogen bonds and π,π stacking interactions are shown as dashed lines and for the sake of clarity the H atoms bonded to C atoms have been omitted..

cis-[*N*-(4-Chlorobenzyl)iminodiacetato- $\kappa^3 N$,*O*,*O*']bis(1*H*-imidazole- κN^3)copper(II)

Crystal data	
[Cu(C ₁₁ H ₁₀ ClNO ₄)(C ₃ H ₄ N) ₂]	$F_{000} = 932$
$M_r = 455.35$	$D_{\rm x} = 1.599 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 9904 reflections
a = 10.2028 (5) Å	$\theta = 2.3 - 27.8^{\circ}$
b = 13.4280 (6) Å	$\mu = 1.33 \text{ mm}^{-1}$
<i>c</i> = 13.9113 (7) Å	T = 298 (2) K
$\beta = 97.1190 \ (10)^{\circ}$	Prism, blue
$V = 1891.20 (16) \text{ Å}^3$	$0.49 \times 0.32 \times 0.15 \text{ mm}$
Z = 4	
Data collection	
Bruker SMART APEX CCD area-detector diffractometer	4043 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\text{int}} = 0.024$
T = 298(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -13 \rightarrow 13$

21629 measured reflections	
4437 independent reflections	

 $T_{\min} = 0.562, T_{\max} = 0.825$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $k = -17 \rightarrow 17$ $l = -18 \rightarrow 18$

 $R[F^2 > 2\sigma(F^2)] = 0.032$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0462P)^2 + 0.8491P]$ $wR(F^2) = 0.086$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ S = 1.05 $\Delta \rho_{\text{max}} = 0.55 \text{ e} \text{ Å}^{-3}$ 4437 reflections $\Delta \rho_{\rm min} = -0.47 \ {\rm e} \ {\rm \AA}^{-3}$ 253 parameters Primary atom site location: structure-invariant direct

methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic o	or	equivalent	isotropic	displ	lacement	parameters	(Å ²	²)
				rear and a second secon		1	······································	···· r ·		r · · · · · · · · ·	1	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.245284 (19)	0.061386 (15)	0.202469 (15)	0.02673 (8)
N1	0.42366 (14)	0.13906 (11)	0.21938 (11)	0.0286 (3)
C2	0.39633 (19)	0.24419 (13)	0.19177 (15)	0.0357 (4)
H2A	0.4771	0.2751	0.1764	0.043*
H2B	0.3680	0.2795	0.2464	0.043*
C3	0.28983 (18)	0.25385 (14)	0.10470 (14)	0.0334 (4)
O4	0.20768 (13)	0.18265 (10)	0.09352 (10)	0.0367 (3)
05	0.28859 (16)	0.33030 (12)	0.05607 (13)	0.0534 (4)
C6	0.49925 (17)	0.09147 (13)	0.14677 (14)	0.0309 (4)
H6A	0.5931	0.0976	0.1682	0.037*
H6B	0.4806	0.1261	0.0854	0.037*
C7	0.46428 (17)	-0.01813 (13)	0.13216 (13)	0.0294 (3)
08	0.34874 (12)	-0.04288 (9)	0.14890 (10)	0.0340 (3)
09	0.54492 (13)	-0.07508 (10)	0.10158 (11)	0.0390 (3)
C10	0.4993 (2)	0.13779 (15)	0.31940 (14)	0.0382 (4)
H10A	0.5713	0.1852	0.3219	0.046*
H10B	0.4413	0.1591	0.3656	0.046*
C11	0.55438 (19)	0.03720 (15)	0.34877 (14)	0.0354 (4)
C12	0.4757 (2)	-0.03648 (16)	0.38096 (15)	0.0391 (4)
H12	0.3882	-0.0224	0.3882	0.047*
C13	0.5256 (2)	-0.13117 (17)	0.40257 (15)	0.0429 (5)
H13	0.4726	-0.1808	0.4240	0.052*
C14	0.6554 (2)	-0.14963 (16)	0.39155 (16)	0.0452 (5)
Cl14	0.71813 (8)	-0.26918 (5)	0.41465 (7)	0.0785 (2)

0.7374 (2)	-0.0771 (2)	0.3637 (2)	0.0544 (6)
0.8257	-0.0909	0.3589	0.065*
0.6863 (2)	0.01688 (18)	0.34306 (17)	0.0478 (5)
0.7412	0.0671	0.3251	0.057*
0.08104 (14)	-0.01447 (12)	0.15999 (11)	0.0313 (3)
0.06850 (19)	-0.08136 (14)	0.09012 (14)	0.0342 (4)
0.1385	-0.1074	0.0612	0.041*
-0.05788 (16)	-0.10680 (13)	0.06625 (12)	0.0385 (4)
-0.0938	-0.1400	0.0178	0.046*
-0.1310 (2)	-0.05290 (18)	0.12264 (19)	0.0507 (6)
-0.2223	-0.0544	0.1215	0.061*
-0.0452 (2)	0.00305 (19)	0.18050 (17)	0.0484 (5)
-0.0678	0.0470	0.2274	0.058*
0.16465 (15)	0.12642 (12)	0.31048 (11)	0.0333 (3)
0.1159 (2)	0.21764 (15)	0.30966 (15)	0.0382 (4)
0.1343	0.2672	0.2666	0.046*
0.03733 (18)	0.22961 (13)	0.37816 (13)	0.0432 (4)
0.0069	0.2872	0.3912	0.052*
0.0349 (2)	0.14175 (17)	0.42734 (16)	0.0463 (5)
-0.0118	0.1283	0.4792	0.056*
0.1139 (2)	0.07826 (15)	0.38561 (15)	0.0393 (4)
0.1314	0.0127	0.4045	0.047*
	0.7374 (2) 0.8257 0.6863 (2) 0.7412 0.08104 (14) 0.06850 (19) 0.1385 -0.05788 (16) -0.0938 -0.1310 (2) -0.2223 -0.0452 (2) -0.0678 0.16465 (15) 0.1159 (2) 0.1343 0.03733 (18) 0.0069 0.0349 (2) -0.0118 0.1139 (2) 0.1314	0.7374(2) $-0.0771(2)$ 0.8257 -0.0909 $0.6863(2)$ $0.01688(18)$ 0.7412 0.0671 $0.08104(14)$ $-0.01447(12)$ $0.06850(19)$ $-0.08136(14)$ 0.1385 -0.1074 $-0.05788(16)$ $-0.10680(13)$ -0.0938 -0.1400 $-0.1310(2)$ $-0.05290(18)$ -0.2223 -0.0544 -0.0678 0.0470 $0.16465(15)$ $0.12642(12)$ $0.1159(2)$ $0.21764(15)$ 0.1343 $0.22961(13)$ 0.0069 0.2872 $0.0349(2)$ $0.14175(17)$ -0.0118 0.1283 $0.1139(2)$ $0.07826(15)$ 0.1314 0.0127	0.7374(2) $-0.0771(2)$ $0.3637(2)$ 0.8257 -0.0909 0.3589 $0.6863(2)$ $0.01688(18)$ $0.34306(17)$ 0.7412 0.0671 0.3251 $0.08104(14)$ $-0.01447(12)$ $0.15999(11)$ $0.06850(19)$ $-0.08136(14)$ $0.09012(14)$ 0.1385 -0.1074 0.0612 $-0.05788(16)$ $-0.10680(13)$ $0.06625(12)$ -0.0938 -0.1400 0.0178 $-0.1310(2)$ $-0.05290(18)$ $0.12264(19)$ -0.2223 -0.0544 0.1215 -0.0678 0.0470 0.2274 $0.16465(15)$ $0.12642(12)$ $0.31048(11)$ $0.1159(2)$ $0.21764(15)$ $0.30966(15)$ 0.1343 0.2272 0.2666 $0.03733(18)$ $0.22961(13)$ $0.37816(13)$ 0.0069 0.2872 0.3912 $0.0349(2)$ $0.14175(17)$ $0.42734(16)$ -0.0118 0.1283 0.4792 $0.1139(2)$ $0.07826(15)$ $0.38561(15)$ 0.1314 0.0127 0.4045

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02382 (12)	0.02576 (13)	0.03157 (13)	-0.00142 (7)	0.00726 (8)	-0.00333 (8)
N1	0.0274 (7)	0.0249 (7)	0.0333 (7)	-0.0021 (5)	0.0031 (6)	-0.0019 (6)
C2	0.0360 (10)	0.0241 (8)	0.0469 (10)	-0.0043 (7)	0.0046 (8)	-0.0022 (8)
C3	0.0313 (9)	0.0308 (9)	0.0398 (9)	0.0016 (7)	0.0114 (7)	0.0025 (7)
O4	0.0364 (7)	0.0343 (7)	0.0383 (7)	-0.0045 (5)	-0.0003 (5)	0.0031 (6)
O5	0.0478 (9)	0.0449 (9)	0.0683 (10)	-0.0006 (7)	0.0098 (8)	0.0252 (8)
C6	0.0265 (8)	0.0296 (9)	0.0377 (9)	-0.0038 (7)	0.0082 (7)	-0.0015 (7)
C7	0.0255 (8)	0.0314 (9)	0.0316 (8)	-0.0010 (7)	0.0049 (7)	-0.0008 (7)
08	0.0254 (6)	0.0296 (6)	0.0486 (8)	-0.0038 (5)	0.0113 (5)	-0.0092 (5)
09	0.0299 (7)	0.0339 (7)	0.0560 (9)	0.0008 (5)	0.0167 (6)	-0.0054 (6)
C10	0.0384 (10)	0.0348 (10)	0.0393 (10)	-0.0033 (8)	-0.0035 (8)	-0.0060 (8)
C11	0.0330 (9)	0.0404 (10)	0.0314 (9)	-0.0022 (8)	-0.0017 (7)	-0.0025 (8)
C12	0.0287 (9)	0.0492 (11)	0.0391 (10)	-0.0023 (8)	0.0026 (8)	0.0010 (9)
C13	0.0398 (11)	0.0451 (11)	0.0428 (11)	-0.0094 (9)	0.0007 (8)	0.0053 (9)
C14	0.0470 (12)	0.0425 (11)	0.0456 (11)	0.0057 (9)	0.0037 (9)	0.0062 (9)
Cl14	0.0848 (5)	0.0506 (4)	0.1031 (6)	0.0214 (3)	0.0231 (4)	0.0204 (4)
C15	0.0358 (11)	0.0629 (15)	0.0663 (15)	0.0110 (10)	0.0133 (10)	0.0200 (12)
C16	0.0341 (10)	0.0507 (13)	0.0582 (13)	-0.0046 (9)	0.0043 (9)	0.0146 (10)
N21	0.0252 (7)	0.0338 (8)	0.0356 (8)	-0.0022 (6)	0.0065 (6)	-0.0010 (6)
C22	0.0328 (9)	0.0332 (9)	0.0370 (9)	-0.0026 (7)	0.0057 (7)	-0.0010 (7)
N23	0.0357 (8)	0.0392 (9)	0.0388 (8)	-0.0086 (7)	-0.0023 (7)	0.0000 (7)
C24	0.0264 (10)	0.0654 (15)	0.0606 (14)	-0.0069 (9)	0.0062 (9)	-0.0075 (11)

C25	0.0275 (10)	0.0648 (15)	0.0548 (13)	-0.0037 (9)	0.0123 (9)	-0.0177 (11)	
N31	0.0355 (8)	0.0315 (8)	0.0344 (8)	0.0009 (6)	0.0104 (6)	-0.0024 (6)	
C32	0.0446 (11)	0.0333 (10)	0.0388 (10)	0.0050 (8)	0.0130 (8)	0.0007 (8)	
N33	0.0490 (10)	0.0373 (9)	0.0459 (9)	0.0095 (8)	0.0169 (8)	-0.0047 (7)	
C34	0.0542 (13)	0.0482 (12)	0.0403 (11)	0.0032 (10)	0.0214 (9)	-0.0007 (9)	
C35	0.0469 (11)	0.0328 (10)	0.0402 (10)	0.0028 (8)	0.0138 (9)	0.0026 (8)	
Geometric parar	neters (Å, °)						
Cu1—O8		1.9556 (13)	C1	3—C14	1.	374 (3)	
Cu1—N21		1.9874 (15)	C1	3—Н13	0.9	9300	
Cu1—N31		2.0009 (15)	C1	4—C15	1.	370 (3)	
Cu1—N1		2.0855 (14)	C1	4—Cl14	1.	743 (2)	
Cu1—O4		2.2252 (13)	C1	5—C16	1.:	382 (3)	
N1—C2		1.480 (2)	C1	5—H15	0.9	9300	
N1—C6		1.489 (2)	C1	6—H16	0.9	9300	
N1—C10		1.505 (2)	N2	1—C22	1.:	318 (2)	
С2—С3		1.529 (3)	N2	1—C25	1.:	373 (2)	
C2—H2A		0.9700	C2	2—N23	1.:	335 (2)	
C2—H2B		0.9700	C2	2—Н22	0.9	9300	
C3—O5		1.229 (2)	N2	3—C24	1.	357 (3)	
С3—О4		1.268 (2)	N2	3—Н23	0.3	8528	
С6—С7		1.522 (2)	C24—C25		1.343 (3)		
С6—Н6А		0.9700	C24—H24		0.9300		
C6—H6B		0.9700	C2	5—H25	0.9300		
С7—О9		1.237 (2)	N3	1—C32	1.322 (2)		
С7—О8		1.274 (2)	N3	1—C35	1.	383 (2)	
C10-C11		1.500 (3)	C3	2—N33	1.:	329 (3)	
C10—H10A		0.9700	C3	2—Н32	0.9	9300	
C10—H10B		0.9700	N3	3—C34	1.	366 (3)	
C11—C12		1.383 (3)	N3	3—Н33	0.3	8605	
C11—C16		1.386 (3)	C3-	34—C35 1.3		353 (3)	
C12—C13		1.389 (3)	C3-	С34—Н34		9300	
C12—H12	0.9300		C3	5—Н35	0.9300		
O8—Cu1—N21		89.70 (6)	C1	1—C12—C13	12	0.84 (19)	
O8—Cu1—N31		152.89 (6)	C1	1—С12—Н12	11	9.6	
N21—Cu1—N31		92.12 (6)	C1	3—С12—Н12	11	9.6	
O8—Cu1—N1		84.05 (5)	C1-	4—C13—C12	11	8.28 (19)	
N21—Cu1—N1		169.05 (6)	C1	4—С13—Н13	12	.0.9	
N31—Cu1—N1		97.54 (6)	C1	2—С13—Н13	12	0.9	
O8—Cu1—O4		108.66 (6)	C1	5—C14—C13	12	2.3 (2)	
N21—Cu1—O4		96.01 (6)	C1	5—C14—Cl14	11	8.91 (18)	
N31—Cu1—O4		98.04 (6)	C1	3—C14—Cl14	11	8.83 (18)	
N1—Cu1—O4		77.60 (5)	C1	4—C15—C16	11	8.7 (2)	
C2—N1—C6		109.27 (14)	C14—C15—H15		12	0.7	
C2—N1—C10		108.01 (14)	C1	6—C15—H15	12	0.7	
C6—N1—C10		111.90 (14)	C1	5—C16—C11	12	0.8 (2)	
C2—N1—Cu1		108.30 (11)	C1	5—C16—H16	11	9.6	
C6—N1—Cu1		103.12 (10)	C1	1—С16—Н16	11	9.6	

C10—N1—Cu1	116.03 (11)	C22—N21—C25	105.20 (16)
N1—C2—C3	112.27 (15)	C22—N21—Cu1	124.73 (13)
N1—C2—H2A	109.2	C25—N21—Cu1	128.92 (14)
C3—C2—H2A	109.2	N21—C22—N23	111.10 (17)
N1—C2—H2B	109.2	N21—C22—H22	124.4
C3—C2—H2B	109.2	N23—C22—H22	124.4
H2A—C2—H2B	107.9	C22—N23—C24	107.64 (17)
O5—C3—O4	126.93 (19)	C22—N23—H23	129.6
O5—C3—C2	117.70 (17)	C24—N23—H23	121.6
O4—C3—C2	115.28 (16)	C25—C24—N23	106.28 (19)
C3—O4—Cu1	114.37 (12)	C25—C24—H24	126.9
N1—C6—C7	111.90 (14)	N23—C24—H24	126.9
N1—C6—H6A	109.2	C24—C25—N21	109.77 (19)
С7—С6—Н6А	109.2	С24—С25—Н25	125.1
N1—C6—H6B	109.2	N21—C25—H25	125.1
С7—С6—Н6В	109.2	C32—N31—C35	105.33 (16)
Н6А—С6—Н6В	107.9	C32—N31—Cu1	125.97 (13)
O9—C7—O8	124.87 (17)	C35—N31—Cu1	126.20 (13)
O9—C7—C6	119.27 (15)	N31—C32—N33	111.45 (18)
O8—C7—C6	115.78 (15)	N31—C32—H32	124.3
C7—O8—Cu1	116.00 (11)	N33—C32—H32	124.3
C11-C10-N1	113.20 (15)	C32—N33—C34	107.75 (17)
C11—C10—H10A	108.9	C32—N33—H33	121.7
N1-C10-H10A	108.9	C34—N33—H33	129.8
C11-C10-H10B	108.9	C35—C34—N33	106.30 (18)
N1—C10—H10B	108.9	С35—С34—Н34	126.9
H10A-C10-H10B	107.8	N33—C34—H34	126.9
C12—C11—C16	119.00 (19)	C34—C35—N31	109.17 (18)
C12—C11—C10	121.28 (18)	С34—С35—Н35	125.4
C16—C11—C10	119.72 (19)	N31—C35—H35	125.4

Hyarogen-bona geomet	TY (A,	9
----------------------	--------	---

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}\!\cdots\!\!A$		
N23—H23···O4 ⁱ	0.85	1.90	2.733 (2)	164		
N33—H33…O9 ⁱⁱ	0.86	1.93	2.779 (2)	169		
Symmetry codes: (i) $-x$, $-y$, $-z$; (ii) $-x+1/2$, $y+1/2$, $-z+1/2$.						

